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Standing waves in flow between finite counterrotating cylinders
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Experimental evidence for standing waves resulting from a supercritical Hopf bifurcation that appears as the
first pattern-forming instability in counterrotating Taylor-Couette flow is presented. Depending on the aspect
ratio two different types of standing waves, denoted as SW0 and SWp, could be observed. Both modes have an
azimuthal wave numberm51 but differ in symmetry. While for SWp , a spatiotemporal glide-reflection
symmetry could be found, SW0 is purely spatial reflection symmetric. The transition between the two modes
is found to be organized in a cusp bifurcation unfolded by variations of the aspect ratio. The ‘‘classical’’ spiral
vortex flow appears in this control parameter regime only as a result of a secondary steady bifurcation from
SW0. This transition is found to be either subcritical or supercritical. The experimentally observed bifurcation
structure has been predicted by theory of Hopf bifurcation to spiral vortex flow in finite counterrotating
Taylor-Couette systems.
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INTRODUCTION

Bifurcations play an important role in the organization
complex dynamics in nonlinear systems@1#. In spatially ex-
tended nonlinear systems, e.g., hydrodynamic flows, ste
or time-dependent patterns often arise from a bifurcation
the basic state@2#. Examples of time-dependent pattern r
sulting from a Hopf bifurcation of the basic state of a hydr
dynamic system can be found in binary mixture convect
@3–5#, in magnetoconvection@6#, in stratified Taylor-Couette
flow @7#, and in counterrotating Taylor-Couette flow@8–20#.
Symmetry and symmetry breaking are crucial in order
determine the solution set close to a bifurcation@21#. Spa-
tially extended nonlinear systems are often assumed to h
an O(2) symmetry, i.e., a translational and a reflection sy
metry @22#. In case of Hopf bifurcation the presence of O(
symmetry leads to a complex bifurcation structure. The
sulting pattern are either traveling waves~TW! or standing
waves~SW! ~see, e.g., Ref.@21#!.

Boundaries play an important role in physical systems.
example of a hydrodynamic system where physical bou
aries qualitatively alter the structure of steady bifurcatio
compared to predictions from theoretical models assum
O(2) symmetry is Taylor-Couette flow@23#. The influence of
boundaries on pattern formation and dynamics in the vicin
of Hopf bifurcation have been studied in binary mixture co
vection with finite geometries. The presence of end wa
introduces so-called ‘‘blinking states’’ and ‘‘repeated tra
sients’’ @4#. Boundaries may also be responsible for break
the reflection symmetry@24# but as a consequence from th
finite extent of a system due to boundaries the translatio
symmetry is broken. The influence of broken translatio
symmetry on Hopf bifurcation has been investigated th
retically by Refs.@3,25,26#. As a result of broken transla
tional symmetry the bifurcation structure of Hopf bifurcatio
is qualitatively altered. Instead of traveling and stand
waves that occur in the O~2!-symmetric case two differen
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types of standing waves appear supercritically from the ba
state. According to the theory standing waves result from
superposition of two counterpropagating traveling wav
having equal amplitudes and a temporal phase differenc
either 0 orp. The standing wave solutions have thus be
denoted as SW0 and SWp having either a purely spatial re
flection symmetry or a spatiotemporal glide-reflection sy
metry. Traveling wave type solutions (TW8) also exist in
case of broken translation symmetry but they arise only
percritically or subcritically from a secondary steady bifu
cation of each standing wave solution. These TW8 solutions
differ from the pure TW which occur in case of Hopf bifu
cation in O(2) symmetry.

One of the classical hydrodynamic systems for the stu
of Hopf bifurcation in basic laminar flow is counterrotatin
Taylor-Couette flow. This is the flow of a viscous fluid co
fined in a gap between concentric rotating cylinders. Un
the assumption of cylinders with infinite axial height the b
sic laminar Couette flow has an axial translational and refl
tion symmetry and an azimuthal rotation symmetry. The fl
is thus invariant under the group O(2)3SO(2) @22,27#. On
the basis of linear stability analysis of laminar Couette flo
Krueger et al. @9# predicted the appearance of nonaxisy
metric time-dependent spiral vortices resulting from a Ho
bifurcation for sufficiently high rotation rates of counterr
tating cylinders. Spiral vortices have the form of travelin
waves in axial direction and of rotating waves in azimuth
direction.

Geometric parameters of experimental systems are the
pect ratio G5L/d, with gap width d5r o2r i and axial
heightL, and the radius ratioh5r i /r o , with r i andr o being
the radii of the inner and outer cylinders, respectively. T
existence of spiral vortices has been confirmed experim
tally by Snyder@10#. This investigation has been performe
in an apparatus with different radius ratiosh
50.2,0.5,0.8,0.956 and a minimum aspect ratioG'17. A
systematic experimental study of counterrotating Tayl
©2003 The American Physical Society08-1
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Couette flow has been performed by Anderecket al. @12#
using an apparatus withh50.883 and aspect ratiosG rang-
ing from 20 to 48. They found a huge variety of differe
flow states but as the first time-dependent pattern appea
in azimuthal Couette flow they observed spiral vortices fo
wide range of counterrotation rates. Further investigations
primary instabilities and also on bicritical curves for flo
between counterrotating cylinders have been performed
merically and experimentally by Langfordet al. @13# and
Tagget al. @14#. They were able to confirm their numerical
obtained stability curves experimentally for a flow with a
aspect ratioG530 @14#. In a significantly shorter experimen
tal system with an aspect ratioG512 Schulz and Pfister@19#
were also able to confirm the numerical calculations of La
ford et al. @13#. Numerical studies on the transition to spir
vortices and their behavior in the nonlinear regime have b
performed numerically by Sanchezet al. @16# and Hoffmann
et al. @18# assuming axial periodicity. Experimentally Tag
et al. @20# were also able to observe ribbons that appear s
critically in the nonlinear regime. Ribbons are standi
waves in axial direction and rotating waves in azimuthal
rection. They may also appear supercritically from Hopf
furcation in counterrotating Taylor-Couette flow under t
assumption of translation symmetry@27# but this transition
has not been found experimentally yet.

On the basis of theory of Hopf bifurcation with broke
translational symmetry Knobloch and Pierce@28# predicted a
qualitatively different bifurcation structure in finite counte
rotating Taylor-Couette flow compared to the bifurcation th
occurs under the assumption of infinite axial height. Acco
ing to their theory spiral vortices are replaced by stand
waves as the first time-dependent pattern resulting fr
Hopf bifurcation in azimuthal Couette flow. They found tw
different types of standing waves denoted as in the gen
theory SW0 and SWp both of which differ in symmetry.
While SWp has a glide-reflection symmetry SW0 has a pure
spatial reflection symmetry. Spiral vortices appear only fr
a subcritical or supercritical steady bifurcation from ea
standing wave solution in the nonlinear regime. The spec
type of bifurcation depends on the system length. Numer
studies of the effect of finite size for the transition to spi
vortices have been performed by Edwardset al. @15# and
Czarnyet al. @17# who found complex flow states in a syste
of small aspect ratio. However, the standing wave soluti
and the bifurcation structure predicted by Knobloch a
Pierce@28# have not yet been observed either in experimen
work or in numerical studies. The aim of this work is
investigate whether standing wave type solutions predic
by Knobloch and Pierce@28# appear in counterrotating
Taylor-Couette flow. Our experimental study on the tran
tion to time-dependent flow is performed in a flow having
smaller aspect ratio than in all previous experimental wo

EXPERIMENTAL SETUP

The experimental Taylor-Couette setup consists of a
cous fluid confined in the gap between two independe
rotating concentric cylinders. The inner cylinder is machin
from stainless steel having a radius ofr i5(12.50
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60.01) mm, while the outer cylinder is made from optica
polished glass with a radius ofr o5(25.0060.01) mm. As a
working fluid silicon oil with the kinematic viscosityn
510.2 cS is used. The temperature of the fluid is therm
statically controlled to (24.0060.01) °C. At top and bottom
the fluid is confined by end plates which are held fixed in
laboratory frame. The distance between the plates define
axial heightL of the flow which is adjustable within an ac
curacy of 0.01 mm. The radius ratio is held fixed toh
50.5 for all measurements and the maximum height of
apparatus isL5250 mm which corresponds to a maximu
aspect ratioG520. As control parameters serve the Re
nolds number of the inner~i! and the outer~o! cylinders,
Rei ,o5dri ,oV i ,o /n, whereV i ,o denote the angular velocity
of the inner~i! and the outer~o! cylinders, respectively. We
utilize laser doppler velocimetry~LDV ! and particle image
velocimetry~PIV! for measurements of the flow velocity.

RESULTS

In Fig. 1 characteristic spatial properties of two differe
time-dependent modes are shown. Both these modes ap
as a result of the first time-dependent instability in count
rotating Taylor-Couette flow. The flow states shown in Fig
are measured for Rei5114.5 and Reo52120 but for differ-
ent aspect ratios. Spatial properties of one of the mod
labeled SWp , are depicted in the upper row and of the oth
mode, labeled SW0, in the lower row of Fig. 1. SWp has
been measured in a flow with an aspect ratioG55.7 and
SW0 in a flow with G56.0. In Fig. 1~a! experimentally ob-
tained distributions of the axial velocity of SWp and SW0 are

FIG. 1. ~a! Axial distributions of axial velocity measured from
standing waves SWp and SW0 at fixed radial position.~b! Instan-
taneous axial velocity distributions determined from~a! represent-
ing the flow field for an azimuthal phase difference ofp. ~c! Sche-
matic plot illustrating qualitatively the axial velocity field in axia
and azimuthal directions. Vertical lines indicate azimuthal positio
corresponding to experimental distributions shown in~b!. ~d! Sche-
matic plot of axial velocity distributions calculated from~c!.
8-2
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presented. They were obtained from LDV measurement
the axial velocity by quasistatic displacement of the m
surement volume through the flow in axial direction for
fixed radial position. The appearance of nodal points in b
distributions provides strong evidence for standing wave p
terns instead of spiral vortices@19#. Note that as the result o
fixed end plates an Ekman vortex pattern is also visible in
distributions@29# of axial velocity. Due to flow visualization
the azimuthal structure of both SW0 and SWp could be iden-
tified as that of rotating waves in azimuthal direction havi
both an azimuthal wave numberm51. From flow visualiza-
tion it could also be observed that the extrema of the velo
distributions shown in~a! coincide with instantaneous veloc
ity distributions of each flow state. These instantaneous
tributions depicted in Fig. 1~b! represent the axial velocity o
the standing waves for two different azimuthal positions h
ing a temporal phase difference ofp.

According to the theory of Hopf bifurcation with broke
translation symmetry standing waves result from a linear
perposition of two sinusoidal counterpropagating travel
waves@sin(kx1vt)1sin(kx2vt1a)# having equal amplitude
but a phase differencea50 andp for SW0 and SWp , re-
spectively. It is observed that the oscillation amplitude go
to zero towards the end. In order to illustrate the appeara
of theoretically predicted standing wave solutions in a s
tem with physical boundaries the effect of Ekman vortic
and spatial characteristics of the oscillation amplitude ha
be taken into account. Schematic diagrams of the axial
locity are depicted in Fig. 1~c! in order to illustrate the axia
and azimuthal patterns of SW0 and SWp . These flow fields
result from a superposition of counterpropagating travel
waves and a qualitative Ekman vortex pattern. As an
proximation of the steady Ekman vortices we used an ex
nentially decaying sinusoidal pattern from each end@29#.
The oscillation amplitude in Fig. 1~c! is spatially varying in
order to mimic the experimental observations. The result
pattern corresponding to the vertical lines plotted in Fig. 1~c!
is in qualitative agreement with the instantaneous experim
tal distributions shown in~b!. Axial distributions calculated
from the pattern shown in~c! are depicted in Fig. 1~d!. A
strong similarity between~a! measured and~d! calculated
distributions can be found.

The most significant difference in the azimuthal structu
of the velocity field of SW0 and SWp occurs in the axial
midplane of the flow. PIV measurements of the (r ,z) veloc-
ity components in this area shown in Fig. 2 illustrate t
azimuthal structure of the velocity field of~a! SWp and ~b!
SW0. The instantaneous velocity fields were measured wi
time lag ofT0/2 whereT0 denotes the oscillation period. Du
to the rotating wave character of the flow a time lag ofT0/2
corresponds to an azimuthal phase shift ofp. In coincidence
with the azimuthal phase shift ofp an axial shift of the flow
is observed for SWp . In contrast to SWp an alternation be-
tween radial inflow and outflow without axial shift with re
spect to the midplane occurs for SW0. Thus SW0 has a
purely spatial reflection symmetry while SWp has a spa-
tiotemporal glide-reflection symmetries. The symmetries
both experimentally observed standing waves are in ag
ment with the solutions illustrated in Fig. 1~c!.
05630
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In Fig. 3 experimental measurements of two qualitative
different bifurcation diagrams are depicted. The diagra
represent the transition to~a! SW0 at G56.0 and~b! SWp at
G55.817 for a fixed outer cylinder Reynolds number Ro
52120. Moreover, in both diagrams the secondary tran
tion from standing waves to spiral vortices~SPI! as well as
the oscillation frequency of each time-dependent mode
shown. As a measure of the bifurcations the extrema of
axial velocity component obtained at characteristic meas
ment points in the flow are used. Due to the reflection sy
metry of SW0 the transitions to these flow states are me
sured at 5.5 mm above the axial midplane. This is close
the maximum of the oscillation amplitude of SW0. Because
SWp and SPI are not reflection symmetric the transition
these flow states is measured in the axial midplane. The
dial position of the measurement volume is held fixed a
distance of 1.5 mm from the inner cylinder for all measu
ments.

In Fig. 3~a! the oscillation amplitude measured at the o
set of SW0 for G56 is shown. A square-root law behavior o
the amplitude can be seen and has been verified by ampli
fits not shown in the figure. Moreover, the oscillation fr
quency (+) stays constant for increasing Reynolds numb
having a finite value at onset. This behavior indicates a
percritical Hopf bifurcation to SW0 at ReSW05113.2. In or-
der to represent the transition from SW0 to SPI a second
measurement (•) of the bifurcation scenario is plotted in Fig

FIG. 2. PIV measurements of instantaneous (r ,z) velocity fields
obtained from~a! SWp and ~b! SW0 at L/2. Measurements were
performed at time difference ofT0/2. (T0 denotes the oscillation
period, andi and o the positions of the inner and outer cylinder
respectively.!
8-3
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3~a!. In the axial midplane the axial velocity of SW0 is al-
ways zero therefore the amplitude of spirals is clearly visib
Note that Fig. 3~a! represents two different measurements
different measurement points of the same bifurcation s
nario. The oscillation frequency remains constant for t
transition. This provides evidence that SPI result at this
pect ratio from a secondary supercritical steady bifurcat
from SW0 at higher Reynolds number.

In Fig. 3~b! measurements of the bifurcation scenario
counterrotating Taylor-Couette flow atG55.817 are pre-
sented. The path from the basic state to SPI is indicated
(* ) while the reverse path from SPI to the basic state
represented by (•). The oscillation frequency (+) remains
constant for the time-dependent modes that occur in the
furcation sequence. Due to a square-root law behavior of
amplitude and a finite frequency at onset evidence for a
percritical Hopf bifurcation from basic state to SWp is given.
The transition takes place at ReSWp5114.0. At higher Rey-
nolds number a transition from SWp to SPI also occurs for
this aspect ratio. In contrast toG56 the transition to SPI is
subcritical as indicated by arrows in Fig. 3~b!. As for G56 a
supercritical steady transition between spiral vortices
SW0 occurs but here it takes place on the secondary bra
A subcritical bifurcation from the secondary branch (SW0)
to the primary branch could also be observed. The bifur
tion is found to occur very close to ReSWp for this particular
aspect ratio but in general these two bifurcations do not
cur at the same critical Reynolds number. For reasons

FIG. 3. Experimental measurement of bifurcation diagrams p
formed at~a! G56.0 and~b! G55.817 for Reo52120. @(* ) and
(•) represent extrema of axial velocity at measurement position~o!
indicates oscillation frequency.# Evidence for supercritical Hopf bi-
furcation to both~a! SW0 at ReSW05113.2 and~b! SWp at ReSWp

5114.0 as well as for~a! supercritical and~b! subcritical steady
bifurcation to spiral vortices is found.
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clarity we do not present an explicit measurement of
subcritical transition from SW0 to the basic state in Fig
3~b!.

In Fig. 4 the stability diagram of counterrotating Taylo
Couette flow for Reo52120 is presented. The bifurcatio
points were obtained from measurements of bifurcation d
grams as shown in Fig. 3. ForG,Gc SWp (+) and for G
.Gc SW0 (•) are observed as the result of a supercriti
Hopf bifurcation. A critical aspect ratio for the Hopf bifurca
tion is found atGc'5.822. The stability lines of subcritica
bifurcations from SWp (n) and of subcritical bifurcations
from SW0 (,) form a region of coexistence of the two so
lutions. Both subcritical stability lines merge within the e
perimental accuracy with the stability line of the Hopf bifu
cation atGc and Rei5113.9. This provides evidence for th
existence of a cusp bifurcation between SW0 and SWp as a
mechanism for stability exchange. Spiral vortices (* ) occur
in this control parameter regime only supercritically fro
SW0. Note that we found no qualitative and almost no qua
titative difference in the bifurcation structure betweenG
55.83 andG56.0 shown in Fig. 3~a!. For reasons of clarity
we have omitted to plot this intermediate region in Fig. 4

Additional experimental work shows that the appearan
of standing waves is not restricted to the aspect ratio reg
depicted in Fig. 4. In Fig. 5 two axial velocity distribution
~a! of SW0 measured atG59.0 and Rei5115.1 and~b! of
SWp measured atG59.5 and Rei5115.0 are presented. A
qualitative similar bifurcation structure could also be o
served in this aspect ratio regime. While SW0 and SWp still

r-

FIG. 4. Experimental stability diagram of counterrotatin
Taylor-Couette flow for Reo52120. Solid lines indicate the loca
tion of supercritical Hopf bifurcation to SW0 (•) and SWp(+) and
of supercritical steady bifurcation to spiral vortices (* ). Dashed
lines represent subcritical bifurcation from SWp (n) and from
SW0 (,).

FIG. 5. Axial distributions of axial velocity obtained for Reo5
2120 from measurements of~a! SWp at Rei5115.1 andG59.5
and of ~b! SW0 at Rei5115.0 andG59.0.
8-4
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appear in counterrotating Taylor-Couette flow as a resul
supercritical Hopf bifurcation the transition to spiral vortic
becomes subcritical. This observation is also in agreem
with the theory of spiral vortices in finite cylinders@28#.

CONCLUSION

Our work shows, to our knowledge, for the first time e
perimental evidence for standing wave solutions appea
from a supercritical Hopf bifurcation in counterrotatin
Taylor-Couette flow. We observe two different types
standing waves which differ in their spatiotemporal symm
tries. These standing waves replace spiral vortices as the
time-dependent mode which would appear under the
sumption of O~2! symmetry. Spiral vortices appear only as
result of subcritical and supercritical steady bifurcation fro
standing waves. The observed bifurcation structure has b
predicted by theory of Hopf bifurcation in SO(2)3O(2)
symmetric systems where the translational symmetry is b
ken @28#. The agreement between observations and the
includes not only the appearance of two different types
standing waves having different symmetries but also det
such as secondary subcritical or supercritical steady bifu
y
.
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tions to spiral vortices. Experimental evidence is presen
that the exchange between the two different standing w
patterns is organized in a cusp bifurcation. This mode
change is not part of the theory. It shows that for sma
systems in contrast to systems used in previous experime
studies the bifurcation structure depends on the aspect r
Thus the aspect ratio is an important control parameter
the transition to spiral vortices in counterrotating Taylo
Couette flow. These results suggest further numerical
experimental works in systems with smaller aspect ra
than used in previous studies. The general conclusion
draw is that important parts of the theory of Hopf bifurcatio
with broken translation symmetry are applicable to Hopf
furcation that occurs in experimental systems with physi
boundaries.
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