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Standing waves in flow between finite counterrotating cylinders
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Experimental evidence for standing waves resulting from a supercritical Hopf bifurcation that appears as the
first pattern-forming instability in counterrotating Taylor-Couette flow is presented. Depending on the aspect
ratio two different types of standing waves, denoted ag &dd SW., could be observed. Both modes have an
azimuthal wave numbem=1 but differ in symmetry. While for S\, a spatiotemporal glide-reflection
symmetry could be found, S\s purely spatial reflection symmetric. The transition between the two modes
is found to be organized in a cusp bifurcation unfolded by variations of the aspect ratio. The “classical” spiral
vortex flow appears in this control parameter regime only as a result of a secondary steady bifurcation from
SW,. This transition is found to be either subcritical or supercritical. The experimentally observed bifurcation
structure has been predicted by theory of Hopf bifurcation to spiral vortex flow in finite counterrotating
Taylor-Couette systems.
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INTRODUCTION types of standing waves appear supercritically from the basic
state. According to the theory standing waves result from a
Bifurcations play an important role in the organization of superposition of two counterpropagating traveling waves
complex dynamics in nonlinear systeirdd. In spatially ex- having equal amplitudes and a temporal phase difference of
tended nonlinear systems, e.g., hydrodynamic flows, steadsither O orm. The standing wave solutions have thus been
or time-dependent patterns often arise from a bifurcation oflenoted as Syand SW, having either a purely spatial re-
the basic stat¢2]. Examples of time-dependent pattern re-flection symmetry or a spatiotemporal glide-reflection sym-
sulting from a Hopf bifurcation of the basic state of a hydro-metry. Traveling wave type solutions (T\Walso exist in
dynamic system can be found in binary mixture convectiorncase of broken translation symmetry but they arise only su-
[3-5], in magnetoconvectiofB], in stratified Taylor-Couette percritically or subcritically from a secondary steady bifur-
flow [7], and in counterrotating Taylor-Couette flg&—20.  cation of each standing wave solution. These "T8¥lutions
Symmetry and symmetry breaking are crucial in order todiffer from the pure TW which occur in case of Hopf bifur-
determine the solution set close to a bifurcatj@i]. Spa- cation in O(2) symmetry.
tially extended nonlinear systems are often assumed to have One of the classical hydrodynamic systems for the study
an O(2) symmetry, i.e., a translational and a reflection symef Hopf bifurcation in basic laminar flow is counterrotating
metry[22]. In case of Hopf bifurcation the presence of O(2) Taylor-Couette flow. This is the flow of a viscous fluid con-
symmetry leads to a complex bifurcation structure. The refined in a gap between concentric rotating cylinders. Under
sulting pattern are either traveling wavéBW) or standing the assumption of cylinders with infinite axial height the ba-
waves(SW) (see, e.g., Ref21]). sic laminar Couette flow has an axial translational and reflec-
Boundaries play an important role in physical systems. Artion symmetry and an azimuthal rotation symmetry. The flow
example of a hydrodynamic system where physical boundis thus invariant under the group O(250(2)[22,27. On
aries qualitatively alter the structure of steady bifurcationghe basis of linear stability analysis of laminar Couette flow
compared to predictions from theoretical models assumindfrueger et al. [9] predicted the appearance of nonaxisym-
0O(2) symmetry is Taylor-Couette flof23]. The influence of metric time-dependent spiral vortices resulting from a Hopf
boundaries on pattern formation and dynamics in the vicinitybifurcation for sufficiently high rotation rates of counterro-
of Hopf bifurcation have been studied in binary mixture con-tating cylinders. Spiral vortices have the form of traveling
vection with finite geometries. The presence of end wallsvaves in axial direction and of rotating waves in azimuthal
introduces so-called “blinking states” and “repeated tran- direction.
sients”[4]. Boundaries may also be responsible for breaking Geometric parameters of experimental systems are the as-
the reflection symmetrj24] but as a consequence from the pect ratio I'=L/d, with gap width d=r,—r; and axial
finite extent of a system due to boundaries the translationdleightL, and the radius ratigg=r; /r,, with r; andr, being
symmetry is broken. The influence of broken translationathe radii of the inner and outer cylinders, respectively. The
symmetry on Hopf bifurcation has been investigated theoexistence of spiral vortices has been confirmed experimen-
retically by Refs.[3,25,26. As a result of broken transla- tally by Snyder{10]. This investigation has been performed
tional symmetry the bifurcation structure of Hopf bifurcation in an apparatus with different radius ratiosy
is qualitatively altered. Instead of traveling and standing=0.2,0.5,0.8,0.956 and a minimum aspect rdiis17. A
waves that occur in the @)-symmetric case two different systematic experimental study of counterrotating Taylor-
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using an apparatus withp=0.883 and aspect ratids rang-

ing from 20 to 48. They found a huge variety of different (SWx
flow states but as the first time-dependent pattern appearing
in azimuthal Couette flow they observed spiral vortices for a

= ~

Al

wide range of counterrotation rates. Further investigations on
primary instabilities and also on bicritical curves for flow
between counterrotating cylinders have been performed nu-
merically and experimentally by Langforet al. [13] and
Tagget al.[14]. They were able to confirm their numerically

obtained stability curves experimentally for a flow with an (SW,
aspect ratid"=30[14]. In a significantly shorter experimen-
tal system with an aspect ratio=12 Schulz and Pfist¢f 9]

Couette flow has been performed by Anderathal. [12] (@) (b) (c) (d)
)
)

were also able to confirm the numerical calculations of Lang-
ford et al. [13]. Numerical studies on the transition to spiral
vortices and their behavior in the nonlinear regime have been
performed numerically by Sanchez al.[16] and Hoffmann
et al. [18] assuming axial periodicity. Experimentally Tagg
et al.[20] were also able to observe ribbons that appear sub-
leca"y n .the 'nonlllnear regime. Rlbbon§ are Standlng FIG. 1. (a) Axial distributions of axial velocity measured from
waves in axial direction and rotating waves in azimuthal d_"standing waves SWand SV at fixed radial position(b) Instan-
rection. They may also appear supercritically from Hopf bi-taneous axial velocity distributions determined fréah represent-
furcation in counterrotating Taylor-Couette flow under thej,g the flow field for an azimuthal phase differencemf(c) Sche-
assumption of translation symmetfg7] but this transition  matic plot illustrating qualitatively the axial velocity field in axial
has not been found experimentally yet. and azimuthal directions. Vertical lines indicate azimuthal positions
On the basis of theory of Hopf bifurcation with broken corresponding to experimental distributions showiibin (d) Sche-
translational symmetry Knobloch and Pief@8] predicted a  matic plot of axial velocity distributions calculated froft).
qualitatively different bifurcation structure in finite counter-
rotating Taylor-Couette flow compared to the bifurcation that+ 0 01) mm, while the outer cylinder is made from optically
occurs under the assumption of infinite axial height. Accordyolished glass with a radius of=(25.00+0.01) mm. As a
ing to their theory spiral vortices are replaced by standingyorking fluid silicon oil with the kinematic viscosity
waves as the first time-dependent pattern resulting from- 10 2 ¢s is used. The temperature of the fluid is thermo-
Hopf bifurcation in azimuthal Couette flow. They found two statically controlled to (24.060.01) °C. At top and bottom
different types of standing waves denoted as in the generghe fiyid is confined by end plates which are held fixed in the
theory SW and SW, both of which differ in symmetry. |ahoratory frame. The distance between the plates defines the
While SW;. has a glide-reflection symmetry S\ias a pure  axjal heightL of the flow which is adjustable within an ac-
spatial reflection symmetry. Spiral vortices appear only fromgyracy of 0.01 mm. The radius ratio is held fixed o
a subcritical or supercritical steady bifurcation from each_ g 5tor all measurements and the maximum height of the
standing wave solution in the nonlinear regime. The SpeCiﬁ%pparatus it =250 mm which corresponds to a maximum
type of bifurcation depends on the system length. Numericaéspect ratiol =20. As control parameters serve the Rey-
stud_ies of the effect of finite size for the transition to spiral,5ids number of the innefi) and the outero) cylinders,
vortices have been performed by Edwastsal. [15] and Re ,=dr, ,Q; ,/v, whereQ, , denote the angular velocity
Czarnyet al.[17] who found complex flow states in a system q the inner(i) and the outefo) cylinders, respectively. We
of small aspect ratio. However, the standing wave solutiongijize |aser doppler velocimetriLDV) and particle image

and the bifurcation structure predicted by Knobloch an elocimetry (PIV) for measurements of the flow velocity.
Pierce[28] have not yet been observed either in experimental

work or in numerical studies. The aim of this work is to

investigate whether standing wave type solutions predicted

by Knobloch and Piercd28] appear in counterrotating  |n Fig. 1 characteristic spatial properties of two different

Taylor-Couette flow. Our experimental study on the transitime-dependent modes are shown. Both these modes appear

tion to time-dependent flow is performed in a flow having aas a result of the first time-dependent instability in counter-

smaller aspect ratio than in all previous experimental work.rotating Taylor-Couette flow. The flow states shown in Fig. 1

are measured for Re 114.5 and Rg=—120 but for differ-

ent aspect ratios. Spatial properties of one of the modes,

labeled SV, are depicted in the upper row and of the other
The experimental Taylor-Couette setup consists of a vismode, labeled SV in the lower row of Fig. 1. SW has

cous fluid confined in the gap between two independentlypeen measured in a flow with an aspect rdiie5.7 and

rotating concentric cylinders. The inner cylinder is machinedSW in a flow with I'=6.0. In Fig. 1a) experimentally ob-

from stainless steel having a radius af=(12.50 tained distributions of the axial velocity of Sy\and SV are

RESULTS

EXPERIMENTAL SETUP
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presented. They were obtained from LDV measurements of
the axial velocity by quasistatic displacement of the mea-(a)
surement volume through the flow in axial direction for a
fixed radial position. The appearance of nodal points in both
distributions provides strong evidence for standing wave pat-
terns instead of spiral vortic¢49]. Note that as the result of
fixed end plates an Ekman vortex pattern is also visible in the L/2
distributions[29] of axial velocity. Due to flow visualization
the azimuthal structure of both SVEnd SW, could be iden-
tified as that of rotating waves in azimuthal direction having
both an azimuthal wave number=1. From flow visualiza-
tion it could also be observed that the extrema of the velocity
distributions shown irfa) coincide with instantaneous veloc-
ity distributions of each flow state. These instantaneous dis-
tributions depicted in Fig. (b) represent the axial velocity of  (b)
the standing waves for two different azimuthal positions hav-
ing a temporal phase difference of
According to the theory of Hopf bifurcation with broken
translation symmetry standing waves result from a linear su-
perposition of two sinusoidal counterpropagating traveling L/2
waves| sin(kx+ wt) +sin(kx— wt+«)] having equal amplitude
but a phase difference=0 and = for SW, and SW., re-
spectively. It is observed that the oscillation amplitude goes
to zero towards the end. In order to illustrate the appearance
of theoretically predicted standing wave solutions in a sys-
tem with physical boundaries the effect of Ekman vortices
and spatial characteristics of the oscillation amplitude has to F|G. 2. PIV measurements of instantaneoug) velocity fields
be taken into account. Schematic diagrams of the axial veobtained from(a) SW,, and (b) SW, at L/2. Measurements were
locity are depicted in Fig. (t) in order to illustrate the axial performed at time difference oF,/2. (T, denotes the oscillation
and azimuthal patterns of SYMand SW,. These flow fields period, andi and o the positions of the inner and outer cylinders,
result from a superposition of counterpropagating travelingespectively.
waves and a qualitative Ekman vortex pattern. As an ap-
proximation of the steady Ekman vortices we used an expo- In Fig. 3 experimental measurements of two qualitatively
nentially decaying sinusoidal pattern from each €¢@é]. different bifurcation diagrams are depicted. The diagrams
The oscillation amplitude in Fig.(t) is spatially varying in  represent the transition @ SW, atI'=6.0 and(b) SW,. at
order to mimic the experimental observations. The resulting"=5.817 for a fixed outer cylinder Reynolds number,Re
pattern corresponding to the vertical lines plotted in Fig) 1 = —120. Moreover, in both diagrams the secondary transi-
is in qualitative agreement with the instantaneous experimertion from standing waves to spiral vorticéSP) as well as
tal distributions shown ir{b). Axial distributions calculated the oscillation frequency of each time-dependent mode are
from the pattern shown iiic) are depicted in Fig. @). A shown. As a measure of the bifurcations the extrema of the
strong similarity betweer{a) measured andd) calculated axial velocity component obtained at characteristic measure-
distributions can be found. ment points in the flow are used. Due to the reflection sym-
The most significant difference in the azimuthal structuremetry of SWj the transitions to these flow states are mea-
of the velocity field of SW and SW, occurs in the axial sured at 5.5 mm above the axial midplane. This is close to
midplane of the flow. PIV measurements of thiez veloc-  the maximum of the oscillation amplitude of $WWBecause
ity components in this area shown in Fig. 2 illustrate theSW, and SPI are not reflection symmetric the transition to
azimuthal structure of the velocity field 68 SW, and (b) these flow states is measured in the axial midplane. The ra-
SWy. The instantaneous velocity fields were measured with glial position of the measurement volume is held fixed at a
time lag of To/2 whereT, denotes the oscillation period. Due distance of 1.5 mm from the inner cylinder for all measure-
to the rotating wave character of the flow a time lagigf2 ~ ments.
corresponds to an azimuthal phase shiftrofin coincidence In Fig. 3(a) the oscillation amplitude measured at the on-
with the azimuthal phase shift af an axial shift of the flow set of SW for I'=6 is shown. A square-root law behavior of
is observed for SW. In contrast to SW an alternation be- the amplitude can be seen and has been verified by amplitude
tween radial inflow and outflow without axial shift with re- fits not shown in the figure. Moreover, the oscillation fre-
spect to the midplane occurs for $WThus SW has a quency ¢) stays constant for increasing Reynolds number
purely spatial reflection symmetry while SWhas a spa- having a finite value at onset. This behavior indicates a su-
tiotemporal glide-reflection symmetries. The symmetries ofpercritical Hopf bifurcation to S\y/at Reyyz=113.2. In or-
both experimentally observed standing waves are in agrealer to represent the transition from Wb SPI a second
ment with the solutions illustrated in Fig(d. measurement:() of the bifurcation scenario is plotted in Fig.
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i In Fig. 4 the stability diagram of counterrotating Taylor-

FIG. 3. Experimental measurement of bifurcation diagrams per_Co_uette flow for_Rgz —120 is presented. The_ blfurgatlor!
formed at(a) ['=6.0 and(b) I'=5.817 for Rg=— 120. [(*) and points were obtained from measurements of bifurcation dia-
(-) represent extrema of axial velocity at measurement positgn, 9r@ms as shown in Fig. 3. Faf<T'c SW, () and forl’
indicates oscillation frequendyEvidence for supercritical Hopf bi- > 1'c SWo (¢) are observed as the result of a supercritical
furcation to both(@) SW, at Reyyp=113.2 and(b) SW,, at Rey, Hopf bifurcation. A critical aspect ratio for the Hopf bifurca-
=114.0 as well as fofa) supercritical andb) subcritical steady tion is found atl’.~5.822. The stability lines of subcritical
bifurcation to spiral vortices is found. bifurcations from SW (A) and of subcritical bifurcations
from SW, (V) form a region of coexistence of the two so-
lutions. Both subcritical stability lines merge within the ex-

3(a). In the axial midplane the axial velocity of 6 al-  perimental accuracy with the stability line of the Hopf bifur-
ways zero therefore the amplitude of spirals is clearly visible o 5tiony atl’, and Re=113.9. This provides evidence for the

Note that Fig. &) represents two different measurements atyyistance of a cusp bifurcation between S#d SW., as a

different measurement points of the same bifurcation SCeechanism for stability exchange. Spiral vortice3 bccur

nario. The oscillation frequency remains constant for this, ihis control parameter regime only supercritically from

transition. This provides evidence that SPI result at this aSg\n,,. Note that we found no qualitative and almost no quan-

pect ratio from a secondary supercritical steady bifurcation e difference in the bifurcation structure betweBn

from S.WO atbhigher Reynolds nfurEbebr:f . o f =5.83 andl’=6.0 shown in Fig. &). For reasons of clarity
In Fig. 3(b) measurements of the bifurcation scenario OTwe have omitted to plot this intermediate region in Fig. 4.

counterrotating Taylor-Couette flow dt=5.817 are pre- Additional experimental work shows that the appearance

sented. The path from the basic state to SPI is indicated bgf standing waves is not restricted to the aspect ratio regime

(*) while the reverse path from SPI to the basic state i%jepicted in Fig. 4. In Fig. 5 two axial velocity distributions
represented by-(. The oscillation frequencye] remains (a) of SW, measured at =9.0 and Re=115.1 and(b) of

constant for the time-dependent modes that occur in the bis\n measured af =95 and Re=115.0 are presented. A

furcation sequence. Due to a square-root law behavior of thgajiative similar bifurcation structure could also be ob-

amplitude and a finite frequency at onset evidence for a SUserved in this aspect ratio regime. While Shd SW. still
percritical Hopf bifurcation from basic state to SWs given. P gime. & W

The transition takes place at 8g,=114.0. At higher Rey-

nolds number a transition from SWo SPI also occurs for (@) SW.

this aspect ratio. In contrast 16=6 the transition to SPI is T

subcritical as indicated by arrows in Figb3 As forI'=6 a

supercritical steady transition between spiral vortices and (b)

SW, occurs but here it takes place on the secondary branch. SW,

A subcritical bifurcation from the secondary branch (W

to the primary branch could also be observed. The bifurca-

tion is found to occur very close to Bg, for this particular FIG. 5. Axial distributions of axial velocity obtained for Re
aspect ratio but in general these two bifurcations do not oc—120 from measurements ¢&) SW, at Re=115.1 andl'=9.5
cur at the same critical Reynolds number. For reasons adnd of (b) SW, at Rg=115.0 andl'=9.0.
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appear in counterrotating Taylor-Couette flow as a result ofions to spiral vortices. Experimental evidence is presented
supercritical Hopf bifurcation the transition to spiral vortices that the exchange between the two different standing wave
becomes subcritical. This observation is also in agreemergatterns is organized in a cusp bifurcation. This mode ex-

with the theory of spiral vortices in finite cylindef28]. change is not part of the theory. It shows that for smaller
systems in contrast to systems used in previous experimental
CONCLUSION studies the bifurcation structure depends on the aspect ratio.

] ] Thus the aspect ratio is an important control parameter for
Our work shows, to our knowledge, for the first time ex- the transition to spiral vortices in counterrotating Taylor-
perimental evidence for standing wave solutions appearinggyette flow. These results suggest further numerical and
from a supercritical Hopf bifurcation in. counterrotating experimental works in systems with smaller aspect ratios
Taylor-Couette flow. We observe two different types of than used in previous studies. The general conclusion we
standing waves which differ in their spatiotemporal symme-grayy s that important parts of the theory of Hopf bifurcation
tries. These standing waves replace spiral vortices as the firgfith proken translation symmetry are applicable to Hopf bi-

time-dependent mode which would appear under the asyrcation that occurs in experimental systems with physical
sumption of @2) symmetry. Spiral vortices appear only as apoyndaries.

result of subcritical and supercritical steady bifurcation from
standing waves. The observed bifurcation structure has been
predicted by theory of Hopf bifurcation in SO()0(2)
symmetric systems where the translational symmetry is bro- We thank Wolfgang Schumann and Heinz Horak for their
ken [28]. The agreement between observations and theortechnical support. The authors acknowledge support from the
includes not only the appearance of two different types oDeutsche Forschungsgemeinschaft. J.L. and G.P. acknowl-
standing waves having different symmetries but also detailedge support from research Grant No. PF 210/10-1 and J.A.
such as secondary subcritical or supercritical steady bifurcaacknowledges support from SFB460.
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